Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: covidwho-20242074

ABSTRACT

Previously, functional coatings on 3D-printed titanium implants were developed to improve their biointegration by separately incorporating Ga and Ag on the biomaterial surface. Now, a thermochemical treatment modification is proposed to study the effect of their simultaneous incorporation. Different concentrations of AgNO3 and Ga(NO3)3 are evaluated, and the obtained surfaces are completely characterized. Ion release, cytotoxicity, and bioactivity studies complement the characterization. The provided antibacterial effect of the surfaces is analyzed, and cell response is assessed by the study of SaOS-2 cell adhesion, proliferation, and differentiation. The Ti surface doping is confirmed by the formation of Ga-containing Ca titanates and nanoparticles of metallic Ag within the titanate coating. The surfaces generated with all combinations of AgNO3 and Ga(NO3)3 concentrations show bioactivity. The bacterial assay confirms a strong bactericidal impact achieved by the effect of both Ga and Ag present on the surface, especially for Pseudomonas aeruginosa, one of the main pathogens involved in orthopedic implant failures. SaOS-2 cells adhere and proliferate on the Ga/Ag-doped Ti surfaces, and the presence of gallium favors cell differentiation. The dual effect of both metallic agents doping the titanium surface provides bioactivity while protecting the biomaterial from the most frequent pathogens in implantology.


Subject(s)
Gallium , Titanium , Titanium/pharmacology , Titanium/chemistry , Silver/pharmacology , Silver/chemistry , Osseointegration , Porosity , Gallium/pharmacology , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Surface Properties
2.
ACS Appl Mater Interfaces ; 15(17): 20638-20648, 2023 May 03.
Article in English | MEDLINE | ID: covidwho-2277202

ABSTRACT

In the present work, we developed an effective antimicrobial surface film based on sustainable microfibrillated cellulose. The resulting porous cellulose thin film is barely noticeable to human eyes due to its submicrometer thickness, of which the surface coverage, porosity, and microstructure can be modulated by the formulations and the coating process. Using goniometers and a quartz crystal microbalance, we observed a threefold reduction in water contact angles and accelerated water evaporation kinetics on the cellulose film (more than 50% faster than that on a flat glass surface). The porous cellulose film exhibits a rapid inactivation effect against SARS-CoV-2 in 5 min, following deposition of virus-loaded droplets, and an exceptional ability to reduce contact transfer of liquid, e.g., respiratory droplets, to surfaces such as an artificial skin by 90% less than that from a planar glass substrate. It also shows excellent antimicrobial performance in inhibiting the growth of both Gram-negative and Gram-positive bacteria (Escherichia coli and Staphylococcus epidermidis) due to the intrinsic porosity and hydrophilicity. Additionally, the cellulose film shows nearly 100% resistance to scraping in dry conditions due to its strong affinity to the supporting substrate but with good removability once wetted with water, suggesting its practical suitability for daily use. Importantly, the coating can be formed on solid substrates readily by spraying, which requires solely a simple formulation of a plant-based cellulose material with no chemical additives, rendering it a scalable, affordable, and green solution as antimicrobial surface coating. Implementing such cellulose films could thus play a significant role in controlling future pan- and epidemics, particularly during the initial phase when suitable medical intervention needs to be developed and deployed.


Subject(s)
Anti-Infective Agents , COVID-19 , Humans , Cellulose/chemistry , Porosity , Surface Properties , SARS-CoV-2 , Anti-Infective Agents/pharmacology , Water/chemistry
3.
Sci Rep ; 12(1): 10693, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-2116415

ABSTRACT

Infectious diseases are among the leading causes of mortality worldwide. A new coronavirus named severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) was identified in Wuhan, China in 2019, and the World Health Organization (WHO) declared its outbreak, coronavirus disease 2019 (COVID-19), as a global pandemic in 2020. COVID-19 can spread quickly from person to person. One of the most challenging issues is to identify the infected individuals and prevent potential spread of SARS-CoV-2. Recently, anti-SARS-CoV-2 immunoglobulin M (IgM) and immunoglobulin G (IgG) antibody tests using immunochromatographic methods have been used as a complement to current detection methods and have provided information of the approximate course of COVID-19 infection. However, blood sampling causes pain and poses risks of infection at the needle puncture site. In this study, a novel patch sensor integrating porous microneedles and an immunochromatographic assay (PMNIA) was developed for the rapid detection of anti-SARS-CoV-2 IgM/IgG in dermal interstitial fluid (ISF), which is a rich source of protein biomarkers, such as antibodies. Biodegradable porous microneedles (MNs) made of polylactic acid were fabricated to extract ISF from human skin by capillary effect. The extracted ISF was vertically transported and flowed into the affixed immunoassay biosensor, where specific antibodies could be detected colorimetrically on-site. Anti-SARS-CoV-2 IgM/IgG antibodies were simultaneously detected within 3 min in vitro. Moreover, the limit of detection of anti-SARS-CoV-2 IgM and IgG concentrations was as low as 3 and 7 ng/mL, respectively. The developed device integrating porous MNs and immunochromatographic biosensors is expected to enable minimally invasive, simple, and rapid anti-SARS-CoV-2 IgM/IgG antibody testing. Furthermore, the compact size of the MN and biosensor-integrated device is advantageous for its widespread use. The proposed device has great potential for rapid screening of various infectious diseases in addition to COVID-19 as an effective complementary method with other diagnostic tests.


Subject(s)
COVID-19 , Communicable Diseases , Antibodies, Viral , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Immunoassay , Immunoglobulin G , Immunoglobulin M , Porosity , SARS-CoV-2
4.
Nanoscale ; 14(46): 17157-17162, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2087342

ABSTRACT

We developed a method for producing porous charged polymer nanosheets using frozen ice containing microplastics. Upon assessing SARS-CoV-2 filtration using nanosheets with 100 nm-sized pores, a high rejection rate of 96% was achieved. The charged surfaces of nanosheets further enabled the electrophoretic capture of the virus using a portable battery with additional real-time sensing capability.


Subject(s)
COVID-19 , Microplastics , Humans , Porosity , Plastics , Polymers , Ice , SARS-CoV-2 , COVID-19/diagnosis
5.
Comput Methods Programs Biomed ; 225: 107094, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2007619

ABSTRACT

BACKGROUND AND OBJECTIVE: Pulmonary fibrosis (PF) is a chronic progressive disease with an extremely high mortality rate and is a complication of COVID-19. Inhalable microspheres have been increasingly used in the treatment of lung diseases such as PF in recent years. Compared to the direct inhalation of drugs, a larger particle size is required to ensure the sustained release of microspheres. However, the clinical symptoms of PF may lead to the easier deposition of microspheres in the upper respiratory tract. Therefore, it is necessary to understand the effects of PF on the deposition of microspheres in the respiratory tract. METHODS: In this study, airway models with different degrees of PF in humans and mice were established, and the transport and deposition of microspheres in the airway were simulated using computational fluid dynamics. RESULTS: The simulation results showed that PF increases microsphere deposition in the upper respiratory tract and decreases bronchial deposition in both humans and mice. Porous microspheres with low density can ensure deposition in the lower respiratory tract and larger particle size. In healthy and PF humans, porous microspheres of 10 µm with densities of 700 and 400 kg/m³ were deposited most in the bronchi. Unlike in humans, microspheres larger than 4 µm are completely deposited in the upper respiratory tract of mice owing to their high inhalation velocity. For healthy and PF mice, microspheres of 6 µm with densities of and 100 kg/m³ are recommended. CONCLUSIONS: The results showed that with the exacerbation of PF, it is more difficult for microsphere particles to deposit in the subsequent airway. In addition, there were significant differences in the deposition patterns among the different species. Therefore, it is necessary to process specific microspheres from different individuals. Our study can guide the processing of microspheres and achieve differentiated drug delivery in different subjects to maximize therapeutic effects.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Animals , Computer Simulation , Delayed-Action Preparations , Humans , Lung , Mice , Microspheres , Models, Biological , Particle Size , Porosity , Pulmonary Fibrosis/drug therapy , Respiratory Aerosols and Droplets , Trachea
6.
Langmuir ; 38(32): 9863-9873, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1972512

ABSTRACT

Lateral flow assays and paper microfluidics have the potential to replace benchtop instrumented medical diagnostic systems with instrument-free systems that rely on passive transport of liquid through micro-porous paper substrates. Predicting the imbibition dynamics of liquid through dry paper substrates is mostly modeled through the Lucas-Washburn (LW) equations. However, the LW framework assumes that the fluid front exhibits a sharp boundary between the dry and wet phases across the liquid imbibition interface. Additionally, the relative humidity in the environment results in moisture trapped within the pores of the paper substrates as the paper attains an equilibrium with the ambient air. Here, we apply a two-phase transport framework based on Brooks and Corey's model to capture imbibition dynamics on partially saturated paper substrates. The model is experimentally validated and is then used to predict the liquid-paper imbibition dynamics in simulated environments with 1-70% relative humidity. The model was also used to determine the saturation gradient of liquid along the imbibition interface of the paper substrate. Insights from these studies enabled us to determine the mechanism of the liquid transport in partially saturated porous paper substrates. The model also enabled us to evaluate the optimal paper shapes and relative humidity of the environment that maximize imbibition rates and minimize imbibition front broadening. Finally, we evaluate the effect of moisture content of paper on the rate of paper-based biochemical reaction by amplifying a sequence of the SARS-CoV-2 RNA target via reverse transcriptase loop-mediated isothermal amplification. Taken together, this study provides some important guidelines to academic and applied researchers working in point-of-care diagnostics to develop paper-based testing platforms that are capable of functioning in a robust manner across multiple environmental conditions.


Subject(s)
COVID-19 , RNA, Viral , COVID-19/diagnosis , Humans , Humidity , Porosity , SARS-CoV-2
7.
J Colloid Interface Sci ; 627: 978-991, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1956194

ABSTRACT

Surgical face masks waste is a source of microplastics (polymer fibres) and inorganic and organic compounds potentially hazardous for aquatic organisms during degradation in water. The monthly use of face masks in the world is about 129 billion for 7.8 billion people. Therefore, in this contribution the utilization of hazardous surgical face masks waste for fabrication of carbon-based electrode materials via KOH-activation and carbonization was investigated. The micro-mesoporous materials were obtained with specific surface areas in the range of 460 - 969 m2/g and a total pore volume of 0.311 - 0.635 cm3/g. The optimal sample showed superior electrochemical performance as an electrode material in supercapacitor in the three-electrode system, attaining 651.1F/g at 0.1 Ag-1 and outstanding capacitance retention of 98 % after a test cycle involving 50'000 cycles. It should be emphasized that capacitance retention is one of the most crucial requirements for materials used as the electrodes in the supercapacitor devices. In this strategy, potentially contaminated face masks, common pandemic waste, is recycled into highly valuable carbon material which can serve in practical applications overcoming the global energy crisis. What is more, all microorganisms, including coronaviruses that may be on/in the masks, are completely inactivated during KOH-activation and carbonization.


Subject(s)
Microplastics , Plastics , Carbon/chemistry , Humans , Masks , Polymers , Porosity , Water
8.
Drug Deliv ; 28(1): 856-864, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1947906

ABSTRACT

SARS-CoV-2 is a novel coronavirus that was isolated and identified for the first time in Wuhan, China in 2019. Nowadays, it is a worldwide danger and the WHO named it a pandemic. In this investigation, a functionalization post-synthesis method was used to assess the ability of an adapted SBA-15 surface as a sorbent to load the drug from an aqueous medium. Different characterization approaches were used to determine the characterization of the substance before and after functionalization such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller) BET surface area analysis, and thermal gravimetric analysis (TGA). Batch adsorption testing was carried out in a single adsorption device to find the impact of multiple variables on the drug amoxicillin charge output. The following parameters were studied: 0-72 hr. contact time, 20-120 mg/l initial concentration, and 20-250 mg of NH2-SBA-15 dose. The outcomes from such experiments revealed the strong influence and behavior of the amino-functional group to increase the drug's load. Drug delivery outcomes studies found that amoxicillin loading was directly related to NH2-SBA-15 contact time and dose, but indirectly related to primary concentration. It was observed that 80% of amoxicillin was loaded while the best release test results were 1 hour and 51%.


Subject(s)
Amoxicillin/therapeutic use , COVID-19 Drug Treatment , Silicon Dioxide/chemistry , Amoxicillin/administration & dosage , Chemistry, Pharmaceutical , Dose-Response Relationship, Drug , Drug Delivery Systems , Humans , Microscopy, Electron, Scanning , Porosity , SARS-CoV-2 , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction
9.
Transl Res ; 249: 13-27, 2022 11.
Article in English | MEDLINE | ID: covidwho-1937268

ABSTRACT

Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM) adjuvant to SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable systemic humoral and type 1 helper T (Th) cell- mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant challenge. Notably, mPSM facilitated the uptake of SARS-CoV-2 RBD antigens by nasal and airway epithelial cells. Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited stronger lung resident T and B cells and IgA responses compared to parenteral vaccination alone, which led to markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant challenge. Overall, our results suggest that mPSM is effective adjuvant for SARS-CoV-2 subunit vaccine in both systemic and mucosal vaccinations.


Subject(s)
COVID-19 , Viral Vaccines , Adjuvants, Immunologic/pharmacology , Animals , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Mucosal , Immunoglobulin A , Mice , Porosity , SARS-CoV-2 , Silicon/pharmacology , Vaccines, Subunit
10.
Environ Sci Technol ; 56(12): 8350-8362, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1838051

ABSTRACT

The pandemic revealed significant gaps in our understanding of the antiviral potential of porous textiles used for personal protective equipment and nonporous touch surfaces. What is the fate of a microbe when it encounters an abiotic surface? How can we change the microenvironment of materials to improve antimicrobial properties? Filling these gaps requires increasing data generation throughput. A method to accomplish this leverages the use of the enveloped bacteriophage ϕ6, an adjustable spacing multichannel pipette, and the statistical design opportunities inherent in the ordered array of the 24-well culture plate format, resulting in a semi-automated small drop assay. For 100 mm2 nonporous coupons of Cu and Zn, the reduction in ϕ6 infectivity fits first-order kinetics, resulting in half-lives (T50) of 4.2 ± 0.1 and 29.4 ± 1.6 min, respectively. In contrast, exposure to stainless steel has no significant effect on infectivity. For porous textiles, differences associated with composition, color, and surface treatment of samples are detected within 5 min of exposure. Half-lives for differently dyed Zn-containing fabrics from commercially available masks ranged from 2.1 ± 0.05 to 9.4 ± 0.2 min. A path toward full automation and the application of machine learning techniques to guide combinatorial material engineering is presented.


Subject(s)
Antiviral Agents , Bacteriophages , Porosity , Textiles
11.
IET Nanobiotechnol ; 16(3): 85-91, 2022 May.
Article in English | MEDLINE | ID: covidwho-1758388

ABSTRACT

Mesoporous magnetic nanoparticles of haematite were synthesised using plant extracts according to bioethics principles. The structural, physical and chemical properties of mesoporous Fe2 O3 nanoparticles synthesised with the green chemistry approach were evaluated by XRD, SEM, EDAX, BET, VSM and HRTEM analysis. Then, their toxicity against normal HUVECs and MCF7 cancer cells was evaluated by MTT assay for 48 h. These biogenic mesoporous magnetic nanoparticles have over 71% of doxorubicin loading efficiency, resulting in a 50% reduction of cancer cells at a 0.5 µg.ml-1 concentration. Therefore, it is suggested that mesoporous magnetic nanoparticles be used as a multifunctional agent in medicine (therapeutic-diagnostic). The produced mesoporous magnetic nanoparticles with its inherent structural properties such as polygonal structure (increasing surface area to particle volume) and porosity with large pore volume became a suitable substrate for loading the anti-cancer drug doxorubicin.


Subject(s)
Nanoparticles , Silicon Dioxide , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Liberation , Humans , Nanoparticles/chemistry , Porosity , Silicon Dioxide/chemistry
12.
Sci Total Environ ; 817: 152995, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1616761

ABSTRACT

With the spread of COVID-19, disposable medical masks (DMMs) have become a significant source of new hazardous solid waste. Their proper disposal is not only beneficial to the safety of biological systems but also useful to achieve considerable economic value. The first step of this study was to investigate the chemical composition of DMMs. It is primarily composed of polypropylene, polyethylene terephthalate and iron, with fibrous polypropylene accounting for approximately 80% of the total weight. Then, DMMs were sulfonated and oxidised by the microwave-driven concentrated sulfuric acid within 8 min based on the fact that the concentrated sulfuric acid exhibits a good microwave absorption capacity. The co-doping of sulfur and oxygen was achieved while improving the thermal stability of DMMs. Subsequently, the self-activation pyrolysis of sulfonated and oxidised DMMs (P-SO@DMMs) was further realized in low-flow-rate argon. The specific surface area of P-SO@DMMs increased from 2.0 to 830.9 m2·g-1. P-SO@DMMs sulfur cathodes have promising electrochemical properties because of their porous structures and the synergistic effect of sulfur and oxygen co-doping. The capacity of the samples irradiated by microwave for 10 min at 0.1, 0.2, 0.5, 1, 2 and 5 C were 1313.6, 1010.9, 816.5, 634.4, 513.4 and 453.1 mAh·g-1, respectively, and after returning to 0.2 C and continuing the cycle for 50 revolutions, maintained 50.5% of the initial capacity. After 400 cycles, its capacity is 38.1% of the initial capacity at 0.5 C. It is slightly higher than the electrochemical performance of the sample treated by microwave for 8 min and significantly higher than the sample treated by 6 min. This work converts structurally complex, biohazardous DMMs into porous carbon with high specific surface area by clean and efficient microwave solvothermal and self-activating pyrolysis, which facilitates the development of carbon based materials at low cost and large scale.


Subject(s)
COVID-19 , Lithium , Carbon/chemistry , Humans , Lithium/chemistry , Masks , Microwaves , Porosity , SARS-CoV-2 , Sulfur/chemistry
13.
J Occup Environ Hyg ; 19(2): 91-101, 2022 02.
Article in English | MEDLINE | ID: covidwho-1553668

ABSTRACT

This study evaluated the efficacy of detergent-based surface cleaning methods against Murine Hepatitis Virus A59 (MHV) as a surrogate coronavirus for SARS-CoV-2. MHV (5% soil load in culture medium or simulated saliva) was inoculated onto four different high-touch materials [stainless steel (SS), Acrylonitrile Butadiene Styrene plastic (ABS), Formica, seat fabric (SF)]. Immediately and 2-hr post-inoculation, coupons were cleaned (damp wipe wiping) with and without pretreatment with detergent solution or 375 ppm hard water. Results identified that physical removal (no pretreatment) removed >2.3 log10 MHV on ABS, SS, and Formica when surfaces were cleaned immediately. Pretreatment with detergent or hard water increased effectiveness over wet wiping 2-hr post-inoculation; pretreatment with detergent significantly increased (p ≤ 0.05) removal of MHV in simulated saliva, but not in culture media, over hard water pretreatment (Formica and ABS). Detergent and hard water cleaning methods were ineffective on SF under all conditions. Overall, efficacy of cleaning methods against coronaviruses are material- and matrix-dependent; pre-wetting surfaces with detergent solutions increased efficacy against coronavirus suspended in simulated saliva. This study provides data highlighting the importance of incorporating a pre-wetting step prior to detergent cleaning and can inform cleaning strategies to reducing coronavirus surface transmission.


Subject(s)
COVID-19 , Murine hepatitis virus , Animals , Detergents , Humans , Mice , Porosity , SARS-CoV-2
14.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1542582

ABSTRACT

COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 min). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS-CoV-2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver, as the material's viral inactivation time was from 5 h to 30 min. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-CoV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.


Subject(s)
Antiviral Agents/pharmacology , Chromium/pharmacology , Cobalt/pharmacology , Molybdenum/pharmacology , Printing, Three-Dimensional , Alloys , COVID-19 , Humans , Porosity , SARS-CoV-2/drug effects , Surface Properties , Virus Inactivation/drug effects
15.
Int J Nanomedicine ; 16: 6575-6591, 2021.
Article in English | MEDLINE | ID: covidwho-1533527

ABSTRACT

Public awareness of infectious diseases has increased in recent months, not only due to the current COVID-19 outbreak but also because of antimicrobial resistance (AMR) being declared a top-10 global health threat by the World Health Organization (WHO) in 2019. These global issues have spiked the realization that new and more efficient methods and approaches are urgently required to efficiently combat and overcome the failures in the diagnosis and therapy of infectious disease. This holds true not only for current diseases, but we should also have enough readiness to fight the unforeseen diseases so as to avoid future pandemics. A paradigm shift is needed, not only in infection treatment, but also diagnostic practices, to overcome the potential failures associated with early diagnosis stages, leading to unnecessary and inefficient treatments, while simultaneously promoting AMR. With the development of nanotechnology, nanomaterials fabricated as multifunctional nano-platforms for antibacterial therapeutics, diagnostics, or both (known as "theranostics") have attracted increasing attention. In the research field of nanomedicine, mesoporous silica nanoparticles (MSN) with a tailored structure, large surface area, high loading capacity, abundant chemical versatility, and acceptable biocompatibility, have shown great potential to integrate the desired functions for diagnosis of bacterial infections. The focus of this review is to present the advances in mesoporous materials in the form of nanoparticles (NPs) or composites that can easily and flexibly accommodate dual or multifunctional capabilities of separation, identification and tracking performed during the diagnosis of infectious diseases together with the inspiring NP designs in diagnosis of bacterial infections.


Subject(s)
Bacterial Infections , COVID-19 , Nanoparticles , Bacterial Infections/diagnosis , Bacterial Infections/drug therapy , Humans , Porosity , SARS-CoV-2 , Silicon Dioxide
16.
Biomolecules ; 11(11)2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523862

ABSTRACT

Metal-organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin' nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical applications. In this context, the role of incorporating different forms of porphyrins, their relationship with the final surface morphology, and their drug/gene loading efficiency were investigated to provide a predictable pattern in regard to the previous works. The conceptual phenomenon was optimized to increase the interactions between the biomolecules and the substrate by reaching the limit of detection to 10 pM for the Anti-cas9 protein, 20 pM for the single-stranded DNA (ssDNA), below 10 pM for the single guide RNA (sgRNA) and also around 10 nM for recombinant SARS-CoV-2 spike antigen. Also, the MTT assay showed acceptable relative cell viability of more than 85% in most cases, even by increasing the dose of the prepared nanostructures.


Subject(s)
COVID-19/diagnosis , Metal-Organic Frameworks/chemistry , Porphyrins/chemistry , Animals , COVID-19 Testing , CRISPR-Cas Systems , DNA, Single-Stranded , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Hydrogen Bonding , Limit of Detection , Nanocomposites , Nanostructures , Nitrogen/chemistry , PC12 Cells , Porosity , RNA, Guide, Kinetoplastida , RNA, Viral/metabolism , Rats , SARS-CoV-2 , Sensitivity and Specificity , Surface Properties
17.
N Biotechnol ; 66: 36-45, 2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1521430

ABSTRACT

The COVID-19 pandemic has generated a major need for non-destructive and environmentally friendly disinfection methods. This work presents the development and testing of a disinfection process based on gaseous ozone for SARS-CoV-2-contaminated porous and non-porous surfaces. A newly developed disinfection chamber was used, equipped with a CeraPlas™ cold plasma generator that produces ozone during plasma ignition. A reduction of more than log 6 of infectious virus could be demonstrated for virus-contaminated cotton and FFP3 face masks as well as glass slides after exposure to 800 ppm ozone for 10-60 min, depending on the material. In contrast to other disinfectants, ozone can be produced quickly and cost-effectively, and its environmentally friendly breakdown product oxygen does not leave harmful residues. Disinfection with ozone could help to overcome delivery difficulties of personal protective equipment by enabling safe reuse with further applications, thereby reducing waste generation, and may allow regular disinfection of personal items with non-porous surfaces.


Subject(s)
Disinfection/methods , Ozone , SARS-CoV-2/drug effects , Virus Inactivation/drug effects , Equipment Contamination , Masks/virology , Ozone/pharmacology , Porosity
18.
ACS Appl Bio Mater ; 4(11): 7921-7931, 2021 11 15.
Article in English | MEDLINE | ID: covidwho-1500415

ABSTRACT

The advent of COVID-19 pandemic has made it necessary to wear masks across populations. While the N95 mask offers great performance against airborne infections, its multilayered sealed design makes it difficult to breathe for a longer duration of use. The option of using highly breathable cloth or silk masks especially for a large populace is fraught with the danger of infection. As a normal cloth or silk mask absorbs airborne liquid, it can be a source of plausible infection. We demonstrate the chemical modification of one such mask, Eri silk, to make it hydrophobic (contact angle of water is 143.7°), which reduces the liquid absorption capacity without reducing the breathability of the mask significantly. The breathability reduces only 22% for hydrophobic Eri silk compared to the pristine Eri silk, whereas N95 shows a 59% reduction of breathability. The modified hydrophobic silk can repel the incoming aqueous liquid droplets without wetting the surface. The results indicate that a multilayered modified silk mask to make it hydrophobic can be an affordable and breathable alternative to the N95 mask.


Subject(s)
COVID-19/prevention & control , Masks , Nanostructures/chemistry , Breath Tests , COVID-19/virology , Humans , Hydrophobic and Hydrophilic Interactions , Porosity , Respiratory Protective Devices/virology , SARS-CoV-2/isolation & purification , Silanes/chemistry , Silk/chemistry
19.
ACS Appl Mater Interfaces ; 13(40): 47996-48008, 2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1440455

ABSTRACT

Use of masks is a primary tool to prevent the spread of the novel COVID-19 virus resulting from unintentional close contact with infected individuals. However, detailed characterization of the chemical properties and physical structure of common mask materials is lacking in the current literature. In this study, a series of commercial masks and potential mask materials, including 3M Particulate Respirator 8210 N95, a material provided by Oak Ridge National Laboratory Carbon Fiber Technology Facility (ORNL/CFTF), and a Filti Face Mask Material, were characterized by a suite of techniques, including scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Wetting properties of the mask materials were quantified by measurements of contact angle with a saliva substitute. Mask pass-through experiments were performed using a dispersed metal oxide nanoparticle suspension to model the SARS-CoV-2 virus, with quantification via spatially resolved X-ray fluorescence mapping. Notably, all mask materials tested provided a strong barrier against respiratory droplet breakthrough. The comparisons and characterizations provided in this study provide useful information when evaluating mask materials for respiratory protection.


Subject(s)
Filtration , Masks , Materials Testing/methods , N95 Respirators , COVID-19/prevention & control , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Polyesters/chemistry , Polypropylenes/chemistry , Porosity , SARS-CoV-2 , Spectrum Analysis, Raman , Wettability , X-Ray Diffraction
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120237, 2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1380807

ABSTRACT

Here, we reported the synthesis of reduced porous graphene oxide (rPGO) decorated with gold nanoparticles (Au NPs) to modify the ITO electrode. Then we used this highly uniform Au NPs@rPGO modified ITO electrode as a surface-enhanced Raman spectroscopy-active surface and a working electrode. The uses of the Au nanoparticles and porous graphene enhance the Raman signals and the electrochemical conductivity. COVID-19 protein-based biosensor was developed based on immobilization of anti-COVID-19 antibodies onto the modified electrode and its uses as a probe for capturing the COVID-19 protein. The developed biosensor showed the capability of monitoring the COVID-19 protein within a concentration range from 100 nmol/L to 1 pmol/L with a limit of detection (LOD) of 75 fmol/L. Furthermore, COVID-19 protein was detected based on electrochemical techniques within a concentration range from 100 nmol/L to 500 fmol/L that showed a LOD of 39.5 fmol/L. Finally, three concentrations of COVID-19 protein spiked in human serum were investigated. Thus, the present sensor showed high efficiency towards the detection of COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Electrochemical Techniques , Electrodes , Gold , Humans , Porosity , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL